59\(^o\)
60\(^o\)
75\(^o\)
76\(^o\)
Correct answer is A
Cos \(\theta\) = \(\frac{4(12) + (-5)(3)}{\sqrt{12^2 + (-5)^2}\sqrt{4^2 + 3^2}}\)
Cos\(\theta\) = \(\frac{48 - 15}{(\sqrt{189})(\sqrt{25})}\)
\(\theta = cos^{-1}\) (\(\frac{33}{61.28}\))
\(\theta\) = cos\(^{-1}\)0.5367
\(\theta\) = 59\(^o\)
If \(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \), find the values of x....
Two forces 10N and 6N act in the directions 060° and 330° respectively. Find the x- componen...
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
Find the minimum value of \(y = x^{2} + 6x - 12\)....
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...
If V = plog\(_x\), (M + N), express N in terms of X, P, M and V...