WAEC Past Questions and Answers - Page 1148

5,736.

Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)

A.

\(-1\frac{1}{2}\)

B.

\(-\frac{15}{16}\)

C.

\(\frac{15}{16}\)

D.

\(1\frac{1}{2}\)

Correct answer is D

\(\int \frac{4}{x^{3}} \mathrm {d} x = \int 4x^{-3} \mathrm {d} x\)

\(\frac{4x^{-3 + 1}}{-2} = -2x^{-2}|_{1}^{2} = \frac{-2}{x^{2}}|_{1}^{2}\)

= \(\frac{-2}{2^{2}}  - \frac{-2}{1^{2}} = -\frac{1}{2}  + 2 = 1\frac{1}{2}\)

5,737.

Calculate, correct to one decimal place, the acute angle between the lines 3x - 4y + 5 = 0 and 2x + 3y - 1 = 0.

A.

70.6°

B.

50.2°

C.

39.8°

D.

19.4°

Correct answer is A

\(\tan \theta = \frac{m_{1} - m_{2}}{1 - m_{1}m_{2}}\)

\(m_{1} = \text{slope of 1st line } 4y = 3x + 5 \implies y = \frac{3}{4}x + \frac{5}{4}\)

\(m_{1} = \frac{3}{4}\)

\(m_{2} = \text{slope of 2nd line} 3y = 1 - 2x \implies y = \frac{1}{3} - \frac{2}{3}x\)

\(m_{2} = -\frac{2}{3}\)

\(\tan \theta = \frac{\frac{3}{4} - (-\frac{2}{3})}{1 - ((\frac{3}{4})(-\frac{2}{3}))} = \frac{\frac{17}{12}}{\frac{1}{2}}\)

\(\tan \theta = \frac{17}{6}\)

\(\theta \approxeq 70.6°\)

5,738.

If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A.

\(2\sqrt{x}(2x + \sqrt{2})\)

B.

\(4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})\)

C.

\(4(2x + \sqrt{x})(2 + \sqrt{x})\)

D.

\(8(2x + \sqrt{x})(2 + \sqrt{x})\)

Correct answer is B

\(y = 2(2x + \sqrt{x})^{2}\)

Let \(u = 2x + \sqrt{x}\)

\(y = 2u^{2}\)

\(\frac{\mathrm d y}{\mathrm d u} = 4u\)

\(\frac{\mathrm d u}{\mathrm d x} = 2 + \frac{1}{2\sqrt{x}}\)

\(\therefore \frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)

= \(4u(2 + \frac{1}{2\sqrt{x}}) \)

= \(4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})\)

5,739.

Which of the following items is found on he credit side of a sales Ledger Control Account?

A.

Credit sales

B.

Debtors cheques dishonoured

C.

Interest on overdue account

D.

Bad debts written off

Correct answer is C

No explanation has been provided for this answer.

5,740.

Calculate, correct to one decimal place, the length of the line joining points X(3, 5) and Y(5, 1).

A.

4.0

B.

4.2

C.

4.5

D.

5.0

Correct answer is C

\(XY = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}\) is the distance between a point \(X(x_{1}, y_{1})\) and \(Y(x_{2}, y_{2})\).

\(XY = \sqrt{(3 - 5)^{2} + (5 - 1)^{2}} = \sqrt{20}\)

= \(2\sqrt{5} = 4. 467 \approxeq 4.5\)