WAEC Past Questions and Answers - Page 1170

5,846.

If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\), find \(|U + V|\).

A.

\(3\sqrt{10}\)

B.

\(\sqrt{82}\)

C.

15

D.

\(2\sqrt{5}\)

Correct answer is A

 \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\)

\(U + V = \begin{pmatrix} -1 - 2 \\ 5 + 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 9 \end{pmatrix}\)

\(|U + V| = \sqrt{(-3)^{2} + 9^{2}} = \sqrt{9 + 81} = \sqrt{90}\)

= \(sqrt{9 \times 10} = 3\sqrt{10}\)

5,847.

Calculate the mean deviation of 1, 2, 3, 4, 5, 5, 6, 7, 8, 9.

A.

2

B.

3

C.

4

D.

5

Correct answer is A

x 1 2 3 4 5 5 6 7 8 9 Total
\(x - \bar{x}\) -4 -3 -2 -1 0 0 1 2 3 4  
\(|x - \bar{x}|\) 4 3 2 1 0 0 1 2 3 4 20

Mean (\(\bar{x}\)) = \(\frac{1+2+3+4+5+5+6+7+8+9}{10} = \frac{50}{10} = 5\)

\(MD = \frac{\sum |x - \bar{x}|}{n} = \frac{20}{10} = 2\)

5,848.

If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\).

A.

3

B.

2

C.

\(\frac{3}{4}\)

D.

-3

Correct answer is D

\(g(x) = \frac{x + 1}{x + 2}, x \neq 2\)

Let y = x, then \(g(y) = \frac{y + 1}{y + 2}\)

Let x = g(y), so that \(x = \frac{y + 1}{y + 2}\)

\(x(y + 2) = y + 1\)

\(xy + 2x = y + 1 \implies xy - y = 1 - 2x\)

\(y(x - 1) = 1 - 2x \implies y = \frac{1 - 2x}{x - 1}\)

\(y = g^{-1}(x) = \frac{1 - 2x}{x - 1}\)

\(g^{-1}(2) = \frac{1 - 2(2)}{2 - 1} = -3\)

5,850.

P and Q are the points (3, 1) and (7, 4) respectively. Find the unit vector along PQ.

A.

\(\begin{pmatrix} 4 \\ 3 \end{pmatrix}\)

B.

\(\begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}\)

C.

\(\begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}\)

D.

\(\begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}\)

Correct answer is C

\(PQ = \begin{pmatrix} 7 - 3 \\ 4 - 1 \end{pmatrix}\)

\(= \begin{pmatrix} 4 \\ 3 \end{pmatrix}\)

\(\hat{n} = \frac{\overrightarrow{PQ}}{|PQ|} \)

\(|PQ| = \sqrt{4^{2} + 3^{2}} = \sqrt{25} = 5\)

\(\hat{n} = \frac{1}{5}\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}\)