N1,608,000
N840,000
N768,000
N168,000
Correct answer is D
No explanation has been provided for this answer.
(12N, 090°)
(10N, 270°)
(10N, 180°)
(10N, 120°)
Correct answer is B
No explanation has been provided for this answer.
If \(\frac{^{n}C_{3}}{^{n}P_{2}} = 1\), find the value of n.
8
7
6
5
Correct answer is A
\(^{n}C_{3} = \frac{n!}{(n - 3)! 3!}\)
\(^{n}P_{2} = \frac{n!}{(n - 2)!}\)
\(\frac{^{n}C_{3}}{^{n}P_{2}} = \frac{n!}{(n - 3)! 3!} ÷ \frac{n!}{(n - 2)!}\)
\(\frac{n!}{(n - 3)! 3!} \times \frac{(n - 2)!}{n!} = \frac{(n - 2)!}{(n - 3)! 3!}\)
Note that \((n - 2)! = (n - 2) \times (n - 2 - 1)! = (n - 2)(n - 3)!\)
\(\frac{(n - 2)(n - 3)!}{(n - 3)! 3!} = 1\)
\(\frac{n - 2}{3!} = 1 \implies n - 2 = 6\)
\(n = 2 + 6 = 8\)
2y - 3x = 0
3y - 2x + 5 = 0
3y + 2x + 5 = 0
2y - 3x - 5 = 0
Correct answer is C
Given line: \(3x - 2y + 4 = 0 \implies 2y = 3x + 4\)
\(y = \frac{3}{2}x + 2\)
\(Gradient (\frac{\mathrm d y}{\mathrm d x}) = \frac{3}{2}\)
Gradient of perpendicular line = \(\frac{-1}{\frac{3}{2}} = \frac{-2}{3}\)
\(\implies \frac{y - (-3)}{x - 2} = \frac{-2}{3}\)
\(\frac{y + 3}{x - 2} = \frac{-2}{3} \)
\(3(y + 3) = -2(x - 2) \implies 3y + 2x + 9 - 4 = 0\)
= \(3y + 2x + 5 = 0\)
N384,000
N379,200
N211,200
N168,000
Correct answer is B
No explanation has been provided for this answer.