WAEC Past Questions and Answers - Page 1173

5,861.

When shares are sold at less than the nominal value, it means they are issued at

A.

A premium

B.

A loss

C.

A discount

D.

Par

Correct answer is C

No explanation has been provided for this answer.

5,862.

Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions.

A.

\(\frac{x^{2}}{x^{2} + 1} + \frac{x + 4}{1 - x}\)

B.

\(\frac{3}{1 - x} + \frac{2x + 1}{x^{2} + 1}\)

C.

\(\frac{x^{2}}{1 - x} + \frac{x + 4}{x^{2} + 1}\)

D.

\(\frac{3}{1 - x} + \frac{2x + 2}{x^{2} + 1}\)

Correct answer is B

\(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)} = \frac{A}{1 -  x} + \frac{Bx + C}{x^{2} + 1}\)

= \(\frac{A(x^{2} + 1) + (Bx + C)(1 - x)}{(1 - x)(x^{2} + 1)}\)

\(\implies x^{2} + x + 4 = A(x^{2} + 1) + (Bx + C)(1 - x)\)

\(x^{2} + x + 4 = Ax^{2} + A + Bx - Bx^{2} - Cx + C\)

\(\implies (A - B)x^{2} = x^{2}; A - B = 1 ...... (i)\)

\((B - C)x = x; B - C = 1 ..... (ii)\)

\(A + C = 4 ...... (iii)\)

Solving the above simultaneous equations by any of the known methods, we get

\(A = 3, B = 2, C = 1\)

\(\therefore  \frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)} = \frac{3}{1 - x} + \frac{2x + 1}{x^{2} + 1}\)

5,863.

Which of the following is a capital reserve?

A.

Profit and loss account balance

B.

Share premium

C.

Gross profit

D.

Share discount

Correct answer is B

No explanation has been provided for this answer.

5,864.

A circular ink blot on a piece of paper increases its area at the rate \(4mm^{2}/s\). Find the rate of the radius of the blot when the radius is 8mm. \([\pi = \frac{22}{7}]\)

A.

0.20 mm/s

B.

0.08 mm/s

C.

0.25 mm/s

D.

0.05 mm/s

Correct answer is B

Given: \(\frac{\mathrm d A}{\mathrm d t} = 4 mm^{2}/s\)

\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)

\(A = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)

\(\implies 4 = 2\pi r \times \frac{\mathrm d r}{\mathrm d t}\)

\(\frac{\mathrm d r}{\mathrm d t} = \frac{4}{2\pi r} = \frac{4 \times 7}{2 \times 22 \times 8}\)

= \(0.07954 mm/s \approxeq 0.08 mm/s\)

5,865.

The sales of five salesgirls on a certain day are as follows; GH¢ 26.00, GH¢ 39.00, GH¢ 33.00, GH¢ 25.00 and GH¢ 37.00. Calculate the standard deviation if the mean sale is GH¢ 32.00. 

A.

GH¢ 5.65

B.

GH¢ 5.66

C.

GH¢ 6.5

D.

GH¢ 6.56

Correct answer is B

\(x\) \(x - \bar{x}\) \((x - \bar{x})^{2}\)

26.00

-6 36
39.00 7 49
33.00 1 1
25.00 -7 49
37.00 5 25
    \(\sum (x - \bar{x})^{2}\)=160

\(S.D = \sqrt{\frac{(x - \bar{x})^{2}}{n}}\)

\(S.D = \sqrt{\frac{160}{5}} = \sqrt{32}\)

= \(GH¢ 5.656 \approxeq GH¢ 5.66\)