Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,581.

TQ is tangent to circle XYTR, < YXT = 32o, RTQ = 40o. find < YTR

A.

108o

B.

121o

C.

140o

D.

148o

Correct answer is A

< TWR = < QTR = 40o (alternate segment)

< TWR = < TXR = 40o(Angles in the same segments)
< YXR = 40o + 32o = 72o

< YXR + < YTR = 180o(Supplementary)

72o + < YTR = 180o

< YTR = 180o - 72o

= 108o

1,582.

In the figure, PQST is a parallelogram and TSR is a straight line. If the area of \(\bigtriangleup\)QRS is 20cm2, find the area of the trapezium PQRT.

A.

35cm2

B.

65cm2

C.

70cm2

D.

140cm2

Correct answer is C

A\(\bigtriangleup\) = \(\frac{1}{2}\) x 8 x h = 20

= \(\frac{1}{2}\) x 8 x h = 4h

h = \(\frac{20}{4}\)

= 5cm

A\(\bigtriangleup\)(PQTS) = L x H

A\(\bigtriangleup\)PQRT = A\(\bigtriangleup\)QSR + A\(\bigtriangleup\)PQTS

20 + 50 = 70cm\(^2\)

ALTERNATIVE METHOD

A\(\bigtriangleup\)PQRT = \(\frac{1}{2}\) x 5 x 28

= 70cm\(^2\)

1,583.

In diagram, PQ || ST and < PQR = 120o, < RST = 130o, find the angle marked x

A.

50

B.

65

C.

70

D.

80

Correct answer is C

x + 60o + 50o = 180o

x = 110o = 180o

x = 180o - 110o

= 70o

1,584.

In the diagram, PR is a diameter of the circle PQRS. PST and QRT are straight lines. Find QRS

A.

20o

B.

25o

C.

30o

D.

35o

Correct answer is B

< PSR = \(\frac{1}{2}\)(180o) = 90o (angle substended by a semi-circle)

∴ < TSR = 90o

< SRT = 90o - 30o = 60o

< PRS = 90o - 35o = 55o

< PRQ = 180 - (60o + 55o) = 180 - 115o = 65o

< SQR = 35o(angles in the same segment)

< QSR + < SRQ + < SQR = 180o

< QSR + 120o + 35o = 180o

< QSR + 155 = 180o

< QSR = 180o - 155o

= 25o

1,585.

The shaded area represents

A.

x \(\leq\) 0, y \(\leq\) 0, 2y + 3x \(\leq\) 6

B.

x \(\geq\) 0, y \(\geq\) 3, 3x + 2y \(\geq\) 6

C.

x \(\geq\) 2, y \(\geq\) 0, 3x + 2y \(\leq\) 6

D.

x \(\geq\) 0, y \(\geq\) 0, 3x + 2y \(\geq\) 6

Correct answer is A

m = \(\frac{y_2 - y_1}{x_2 - x_2} = \frac{3 - 0}{0 - 2} = \frac{-3}{2}\)

= \(\frac{y - y_1}{x- x_1}\)

m = \(\frac{y - 3}{x}\) \(\geq\) \(\frac{-3}{2}\)

2(y - 3) \(\geq\) - 3x = 2y - 6 \(\geq\) - 3x

= 2y + 3x \(\leq\) 6 ; x \(\leq\) 0, y \(\leq\) 0