How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
In triangle PQR, PQ = 1cm, QR = 2cm and PQR = 120o Find the longest side of the triangle
\(\sqrt{3}\)cm
\(\sqrt{7}\)cm
3cm
7cm
Correct answer is B
PR2 = PQ2 + QR2 - 2(QR)(PQ) COS 120o
PR2 = 12 + 22 - 2(1)(2) x - cos 60o
= 5 - 2(1)(2) x -\(\frac{1}{2}\)
= 5 + 2 = 7
PR = \(\sqrt{7}\)cm
If cot \(\theta\) = \(\frac{x}{y}\), find cosec\(\theta\)
\(\frac{1}{y}\)(x2 + y2)
\(\frac{x}{y}\)
\(\frac{1}{y}\)\(\sqrt{x^2 + y^2}\)
\(\frac{x - y}{y}\)
Correct answer is C
\(\cot \theta = \frac{x}{y}\)
\(\implies \tan \theta = \frac{y}{x}\)
\(opp = y; adj = x\)
Using Pythagoras theorem, \(Hyp^{2} = Opp^{2} + Adj^{2}\)
\(Hyp^{2} = y^{2} + x^{2}\)
\(Hyp = \sqrt{y^{2} + x^{2}}\)
\(\sin \theta = \frac{y}{\sqrt{y^{2} + x^{2}}}\)
\(\therefore \csc \theta = \frac{\sqrt{y^{2} + x^{2}}}{y}\)
= \(\frac{1}{y}(\sqrt{y^{2} + x^{2}})\)
Simplify \(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\)
\(\frac{a - b}{2a + b}\)
\(\frac{2a + 7b}{a - b}\)
\(\frac{2a - 7b}{a + b}\)
\(\frac{2a + 7b}{a + b}\)
Correct answer is D
\(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\) = \(\frac{(2a)^2 - (7b)^2}{(a + b)(2a - 7b)}\)
= \(\frac{(2a + 7b)(2a - 7b)}{(a + b)(2a - 7b)}\)
= \(\frac{2a + 7b}{a + b}\)
Simplify \(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\)
\(\frac{x}{(x +2)(x - 3)}\)
\(\frac{2}{(x + 5)(x - 3)}\)
\(\frac{2}{(x + 1)(x + 3)}\)
\(\frac{2}{(x - 1)(x - 3)}\)
Correct answer is C
\(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\) = \(\frac{1}{(x + 1)(x + 2)}\) + \(\frac{1}{(x + 1)(x + 1)}\)
\(\frac{(x + 1)+ (x + 3)}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{x + 1 + x + 3}{(x + 1)(x + 2)(x + 3)}\)
\(\frac{2x + 4}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{2(x + 2)}{(x + 1)(x + 2)(x + 3)}\)
= \(\frac{2}{(x + 1)(x + 3)}\)
The solution of the quadratic equation px2 + qx + b = 0 is
\(\sqrt{\frac{-b \pm b^2 - 4ac}{2a}}\)
\(\frac{-b \pm \sqrt{ p^2 - 4pb}}{2a}\)
\(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
\(\frac{-q \pm \sqrt{ p^2 - 4bp}}{2p}\)
Correct answer is C
px2 + qx + b = 0
Using almighty formula
\(\frac{-b \pm \sqrt{ b^2 - 4ac}}{2a}\).........(i)
Where a = p, b = q and c = b
substitute for this value in equation (i)
= \(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)