Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

311.

A fence 2.4 m tall, is 10m away from a tree of height 16m. Calculate the angle of elevation of the top of the tree from the top of the fence. 

A.

76.11\(^o\)

B.

53.67\(^o\)

C.

52.40\(^o\)

D.

51.32\(^o\)

Correct answer is B

Tan \(\theta\) = \(\frac{13.6}{10}\)

= tan\(^{-1}\)(1.36)

\(\theta\) = 53.67\(^o\)

312.

In the diagram, XYZ is an equilateral triangle of side 6cm and Y is the midpoint of \(\overline{XY}\). Find tan (< XZT) 

A.

\(\frac{1}{\sqrt{3}}\)

B.

\(\frac{\sqrt{3}}{2}\)

C.

\(\sqrt{3}\)

D.

\(\frac{1}{2}\)

Correct answer is A

ZT = \(\sqrt{6^2 - 3^2}\)

ZT = \(\sqrt{27}\) = \(3\sqrt{3}\)

tan (< XZT) =  \(\frac{3}{3\sqrt{3}}\)

= - \(\frac{1}{\sqrt{3}}\)

313.

Simplify; \(\frac{a}{b} - \frac{b}{a} - \frac{c}{b}\)

A.

\(\frac{a - b + c}{ab}\)

B.

\(\frac{ab - bc - ac}{ab}\)

C.

\(\frac{a^2 - b^2 + ac}{ab}\)

D.

\(\frac{a^2 - b^2 - ac}{ab}\)

Correct answer is D

\(\frac{a}{b} - \frac{b}{a} - \frac{c}{b}\)

\(\frac{a^2 - b^2- ac}{ab}\) 

314.

A man is five times as old as his son. In four years' time, the product of their ages would be 340. If the son's age is y, express the product of their ages in terms of y.

A.

5y\(^2 - 16y - 380 = 0\)

B.

5y\(^2 - 24y - 380 = 0\)

C.

5y\(^2 - 16y - 330 = 0\)

D.

5y\(^2 + 24y - 324 = 0\)

Correct answer is D

Man = x, Son = y 

x = 5y

(x + 4)(y + 4) = 350

(5y + 4)(y + 4) = 340

5y\(^2\) + 20y + 4y + 16 - 240 = 0

5y\(^2\) + 24y - 324 = 0

315.

The expression \(\frac{5x + 3}{6x (x + 1)}\) will be undefined when x equals 

A.

{0, 1}

B.

{0, -1}

C.

{-3, -11}

D.

{-3, 0}

Correct answer is B

6x(x + 1) = 0

When 6x = 0 and 

x + 1 = 0

x = 0 and x = -1

(0, -1)