Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

331.

Express 1 + 2 log10\(^3\) in the form log10\(^9\) 

A.

log10\(^{90}\)

B.

log10\(^{19}\)

C.

log10\(^{9}\)

D.

log10\(^{6}\)

Correct answer is A

1 + 2log\(_{10}^3\)

= log\(_{10}^{10} + log_{10}^{3^2}\)

= log\(_{10}^{10} + log_{10}^{9}\)

= log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\)

332.

Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{4}}\)]\(^{\frac{1}{3}}\)

A.

\(\frac{3}{4}\)

B.

\(\frac{9}{16}\)

C.

\(\frac{3}{8}\)

D.

\(\frac{1}{4}\)

Correct answer is C

[(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{4}}\)]\(^{\frac{1}{3}}\)

= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\)

= [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\)

= [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\)

(\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\)

= \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) 

333.

If  X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y.

A.

{2, 3, 4, 6}

B.

{1, 2, 3, 4, 6}

C.

{2, 3, 4, 6, 8}

D.

{1, 2, 3, 4, 6, 8}

Correct answer is B

\(\mu\) = {1, 2, 3, 4..., 10}

X = {1, 2, 3, 4, 5, 6}

Y = {1, 2, 3, 4, 6, 8}

Therefore;

X \(\cap\) Y = {1, 2, 3, 4, 6}

334.

Evaluate and correct to two decimal places, 75.0785 - 34.624 + 9.83 

A.

30.60

B.

50.29

C.

50.28

D.

30.63

Correct answer is C

 75.0785
-35.624

--------------

40.4545

+9.83

-------------

50.28 to 2d.p 

335.

Evaluate: \(\frac{0.42 \div 2.5}{0.5 \times 2.95}\), leaving the answer in the standard form.

A.

1.639 x 10\(^2\)

B.

1.639 x 10\(^1\)

C.

1.639 x 10\(^{-1}\)

D.

1.639 x 10\(^{-2}\)

Correct answer is C

\(\frac{0.42 \div 2.5}{0.5 \times 2.05} = \frac{0.168}{1.025}\)

= 1.639 x 10\(^{-1}\)