Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

426.

Evaluate (212)\(_3\) - (121)\(_3\) + (222)\(_3\)

A.

(313)\(_3\)

B.

(1000)\(_3\)

C.

(1020)\(_3\)

D.

(1222)\(_3\)

Correct answer is C

Evaluate (212)\(_3\) - (121)\(_3\) + (222)\(_3\)

(212)\(_3\)  + (222)\(_3\) = 1211\(_3\)

→ 1211\(_3\) - 121\(_3\)

= 1020\(_3\)

 

427.

The annual salary of Mr. Johnson Mohammed for 1989 was N12,000.00. He spent this on agriculture projects, education of his children, food items, saving , maintenance and miscellaneous items as shown in the pie chart

How much did he spend on food items?

A.

N9,700.00

B.

N6,700.00

C.

N2,000.00

D.

N4,000.00

E.

N2,300.00

Correct answer is E

Degree for food items = 360° - (120° + 80° + 43° + 30° + 18°)

= 360° - 291°

= 69°

∴∴ Amount spent on food items = \(\frac{69}{360}\)×12,000.00

= N2300.00

428.

Evaluate \(\frac{2\sin 30 + 5\tan 60}{\sin 60}\), leaving your answer in surd form.

A.

\(\frac{2\sqrt{3}}{3} + 10\)

B.

\(\frac{3\sqrt{2} - 1}{5}\)

C.

\(\frac{3\sqrt{2} + 1}{5}\)

D.

\(\frac{2\sqrt{3}}{3} - 10\)

Correct answer is A

\(\frac{2\sin 30 + 5\tan 60}{\sin 60}\)

\(\sin 30 = \frac{1}{2}; \tan 60 = \sqrt{3}; \sin 60 = \frac{\sqrt{3}}{2}\)

\(\therefore \frac{2\sin 30 + 5\tan 60}{\sin 60} = \frac{2(\frac{1}{2}) + 5(\sqrt{3})}{\frac{\sqrt{3}}{2}}\)\)

= \(\frac{1 + 5\sqrt{3}}{\frac{\sqrt{3}}{2}}\)

= \(\frac{2(1 + 5\sqrt{3})}{\sqrt{3}}\)

= \(\frac{2 + 10\sqrt{3}}{\sqrt{3}}\)

Rationalizing, we get

= \(\frac{2\sqrt{3} + 30}{3}\)

= \(\frac{2}{3} \sqrt{3} + 10\)

429.

If \(\sin x = \frac{4}{5}\), find \(\frac{1 + \cot^2 x}{\csc^2 x - 1}\).

A.

\(\frac{13}{2}\)

B.

\(\frac{25}{9}\)

C.

\(\frac{3}{13}\)

D.

\(\frac{4}{11}\)

Correct answer is B

\(\sin x = \frac{opp}{Hyp} = \frac{4}{5}\)

5\(^2\) = 4\(^2\) + adj\(^2\)

adj\(^2\) = 25 - 16 = 9

adj = \(\sqrt{9}\) = 3

\(\tan x = \frac{4}{3}\)

\(\cot x = \frac{1}{\frac{4}{3}} = \frac{3}{4}\)

\(\cot^2 x = (\frac{3}{4})^2 = \frac{9}{16}\)

\(\csc x = \frac{1}{\sin x}\)

= \(\frac{1}{\frac{4}{5}} = \frac{5}{4}\)

\(\csc^2 x = (\frac{5}{4})^2 = \frac{25}{16}\)

\(\therefore \frac{1 + \cot^2 x}{\csc^2 x - 1} = \frac{1 + \frac{9}{16}}{\frac{25}{16} - 1}\)

= \(\frac{25}{16} \div \frac{9}{16}\)

= \(\frac{25}{9}\)

430.

Calculate the volume of the regular three dimensional figure drawn above, where < ABC = 90° (a right- angled triangle).

A.

394 cm\(^3\)

B.

425 cm\(^3\)

C.

268 cm\(^3\)

D.

540 cm\(^3\)

Correct answer is D

|AC| = |DF| = 13 cm

Using Pythagoras theorem,

|AC|\(^2\) = |AB|\(^2\) + |BC|\(^2\)

13\(^2\) = 12\(^2\) + |BC|\(^2\)

|BC|\(^2\) = 169 - 144 = 25

|BC| = \(\sqrt{25}\)

= 5 cm

Volume of triangular prism = \(\frac{1}{2} \times base \times length \times height\)

= \(\frac{1}{2} \times 5 \times 12 \times 18\)

= 540 cm\(^3\)