WAEC Past Questions and Answers - Page 1008

5,036.

If α and β are the roots of \(7x2 +12x - 4 = 0\),find the value of \(\frac{αβ}{(α + β)^2}\)

A.

\( \frac{7}{36}\)

B.

-\( \frac{36}{7}\)

C.

\(\frac{36}{7}\)

D.

-\( \frac{7}{36}\)

Correct answer is D

The general form of a quadratic equation is:

\(x^2\) -(sum of roots)\(x\) +(product of roots) = 0

\(7x^2+12x-4=0\)

Divide through by 7

=\(x^2+\frac{12}{7}x-\frac{4}{7}=0\)

=\(x^2-(-\frac{12}{7})x+(-\frac{4}{7})=0\)

\(\therefore\) sum of roots = \(-\frac{12}{7}\), and products of roots =\(-\frac{4}{7}\)

α + β = \(-\frac{12}{7}, αβ = -\frac{4}{7}\)

\(\frac{αβ}{(α + β)^2} = \frac{\frac{-4}{7}}{(\frac{-12}{7})^2}\)

=\(\frac{\frac{-4}{7}}{\frac{144}{49}}=-\frac{4}{7}\times\frac{49}{144}\)

\(\therefore - \frac{7}{36}\)

5,037.

>Evaluate: \(\int(2x + 1)^3 dx\)

A.

\(8(2x + 1)^2 + k\)

B.

\(6(2x + 1)^2 + k\)

C.

\(\frac{1}{8} (2x + 1)^4 + k\)

D.

\(\frac{1}{6} (2x + 1)^4 + k\)

Correct answer is C

Using substitution method, Let \(u = 2x + 1\)

\(\frac{du}{dx}=2==>du=2dx==>dx=\frac{du}{2}\)

=\(\int\frac{u^3}{2} du = \frac{1}{2}\int u^3 du\)

=\(\frac{1}{2}(\frac{u^4}{4})=\frac{u^4}{8}\)

\(\therefore\frac{1}{8} (2x + 1)^4 + k\)

5,038.

In how many ways can a committee of 3 women and 2 men be chosen from a group of 7 men and 5 women?

A.

500

B.

350

C.

720

D.

210

Correct answer is D

For choosing, its different 'combinations'

Options - 7 men, 5 women
To pick - 2 men, 3 women

∴ The number of ways to choose a committee of 3 women and 2 men from a group of 7 men and 5 women is:
=\(^5C_3 \times ^7C_2\)

=\(\frac{5\times4\times3}{3\times2}\times\frac{7\times6}{2\times1}\)

=\(10\times21\)

=210

5,039.

Adu's scores in five subjects in an examination are 85848386 and 87. Calculate the standard deviation.

A.

2.0

B.

1.4

C.

1.8

D.

1.6

Correct answer is B

n = 5

x̄ = \(\frac{∑x}{n} = \frac{85 + 84 + 83 + 86 + 87}{5} = \frac{425}{5} = 85\)

\(x\)    \(x - x̄\)           \((x - x̄)^2\)
85   0                0
84  -1                1
83  -2                4
86   1                1
87   2                4
    \(\Sigma(x - x̄)^2 = 10\)

 

\(S.D = √\frac{∑(x - x̄ )}{n} = √\frac{10}{5}\)

∴ S.D = √2 =1.4

5,040.

An exponential sequence (G.P.) is given by \(\frac{9}{2},\frac{3}{4},\frac{1}{8},\)....Find its sum to infinity

A.

\(5\frac{2}{5}\)

B.

\(4\frac{1}{5}\)

C.

\(13\frac{1}{2}\)

D.

\(6\frac{3}{4}\)

Correct answer is A

Sum to infinity of a G.P when /r/ < 1 = \(\frac{a}{1 - r}\)

a = \(\frac{9}{2},r = \frac{T_2}{T_1} = \frac{3}{4} + \frac{9}{2}\)

r = \(\frac{3}{4} \times \frac{2}{9} = \frac{1}{6}\)

\(S_∞ = \frac{\frac{9}{2}}{1-\frac{1}{6}} = \frac{\frac{9}{2}}{\frac{5}{6}} = \frac{27}{5}\)

\(\therefore S_∞ = 5\frac{2}{5}\)