WAEC Past Questions and Answers - Page 1012

5,056.

The table shows the operation * on the set {x, y, z, w}.

* X Y Z W
X Y Z X W
Y Z W Y X
Z X Y Z W
W W X W Z

Find the identity of the element.

A.

W

B.

Y

C.

Z

D.

X

Correct answer is C

From the table, x * z = x, y * z = y, z * z = z and w * z = w

∴ z is the identity element

5,057.

If\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)find the value of x

A.

\(-\frac{5}{8}\)

B.

\(-\frac{3}{4}\)

C.

\(\frac{3}{4}\)

D.

\(-\frac{5}{8}\)

Correct answer is D

\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)

\((\frac{1}{9})^{2x-1} = (\frac{1}{9})^{2(2-3x)}\)

\((\frac{1}{9})^{2x-1} = (\frac{1}{9})^{4-6x}\)

Since the bases are equal, powers can be equated

= 2x - 1 = 4 - 6x

= 2x + 6x = 4 + 1

= 8x = 5

\(\therefore x = \frac{5}{8}\)

5,058.

Given that \(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\), where x is an obtuse angle and y is an acute angle, find the value of sin (x - y).

A.

\(\frac{63}{65}\)

B.

\(\frac{48}{65}\)

C.

\(\frac{56}{65}\)

D.

\(\frac{16}{65}\)

Correct answer is A

\(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\)

x is obtuse i.e sin x = + ve while cos x = + ve

\(cos x=\frac{3}{5}==>cos x=-\frac {3}{5}(obtuse)\)

\(sin y= \frac{5}{13}\)

\(sin (x-y) = sin x\) \(cos y - cos x\) \(sin y\)

\(sin(x-y) = \frac{4}{5}\times\frac{12}{13}-(-\frac{3}{5})\times\frac{5}{13}\)

\(sin(x-y) = \frac{48}{65}-(-\frac{3}{13})\)

\(\therefore sin (x-y) = \frac{48}{65} + \frac{3}{13} = \frac{63}{65}\)

5,059.

Evaluate \(\int^1_0 x(x^2-2)^2 dx\)

A.

\(\frac{6}{7}\)

B.

\(1\frac{1}{6}\)

C.

\(\frac{1}{7}\)

D.

\(3\frac{1}{6}\)

Correct answer is B

\(\int^1_0 x(x^2-2)^2 dx\)

\((x^2-2)^2=x^4-2x^2-2x^2+4\)

=\(x^4-4x^2+4\)

\(x(x^2-2)^2=x(x^4-4x^2+4)\)

=\(x^5-4x^3+4x\)

\(\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx\)

=\((\frac{x^6}{6} - x^4+2x^2)^1_0\)

= \((\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)\)

=\(\frac{7}{6} - 0 =\frac{7}{6}\)

\(\therefore 1\frac{1}{6}\)

5,060.

The distance S metres moved by a body in t seconds is given by \(S = 5t^3 - \frac{19}{2} t^2 + 6t - 4\). Calculate the acceleration of the body after 2 seconds

A.

19 \(ms ^{-2}\)

B.

21 \(ms ^{-2}\)

C.

41 \(ms ^{-2}\)

D.

31 \(ms ^{-2}\)

Correct answer is C

\(S = 5t^3 - \frac{19}{2} t^2 + 6t - 4\)

\(v(t)=\frac{dS}{dt}=15t^2-19t+6\)

\(a(t)=\frac{dv}{dt}=30t-19\)

∴a(2)=30(2)-19=60-19=41 \(ms ^{-2}\)