WAEC Past Questions and Answers - Page 1015

5,071.

Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0.

A.

x ≤ -5 or x ≥ \(\frac{3}{2}\)

B.

x ≥ -5 or x ≤\(\frac{3}{2}\)

C.

-5 ≤ x ≤ \(\frac{3}{5}\)

D.

\(\frac{3}{5}\) ≤ x ≤ -5

Correct answer is A

2x\(^2\) + 7x - 15 ≥ 0

2x\(^2\) -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0

x ≤ -5 or x ≥ \(\frac{3}{2}\)

5,072.

Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º

A.

60º 0r 120º

B.

30º 0r 150º

C.

30º 0r 120º

D.

60º 0r 150º

Correct answer is B

4sin\(^2\)θ + 1 = 2

4sin\(^2\)θ  = 2 - 1

4sin\(^2\)θ = 1

\(\sqrt sin^2θ\) = \(\sqrt \frac{1}{4}\)

sinθ = \(\frac{1}{2}\)

θ = \(sin^{-1} \frac{1}{2}\)

θ = 30º 0r 150º

5,073.

Find correct to the nearest degree, the acute angle formed by the lines y = 2x + 5 and 2y = x - 6

A.

76\(^∘\)

B.

53\(^∘\)

C.

37\(^∘\)

D.

14\(^∘\)

Correct answer is C

tanθ = m1 - m2
1 + m1m2


y = 2x + 5
m1 = 2
2y = x - 6

y = 1
2
x - 3

 

m2 = 1
2

 

tanθ = 2 - \(\frac{1}{2}\)
1+2(\(\frac{1}{2}\))

tanθ =  \(\frac{3}{2}\) ÷ (1+1)

tanθ = \(\frac{3}{2}\) ÷ 2

tanθ = 3
4

θ = \(tan^{-1} (\frac{3}{4})\)

θ = 36.87º
θ = 37º

5,074.

The mean heights of three groups of students consisting of 20, 16 and 14 students each are 1.67m, 1.50m and 1.40m respectively. Find the mean height of all the students.

A.

1.63m

B.

1.54m

C.

1.52m

D.

1.42m

Correct answer is B

for 20 students, mean = 1.67

μ = ∑fx
f


∑fx = μf
∑fx = 20 × 1.67 = 33.4
for group 2
∑fx = 16 × 1.50 = 24
for group 3
∑fx = 14 × 1.40 = 19.6
33.4 + 24 + 19.6 = 77
∑f = 20+16+14 = 50

μ = 77
50
= 1.54m

5,075.

A body of mass 18kg moving with velocity 4ms-1 collides with another body of mass 6kg moving in the opposite direction with velocity 10ms-1. If they stick together after the collision, find their common velocity.

A.

\(\frac{1}{2}\) m/s

B.

\(\frac{1}{3}\) m/s

C.

2m/s

D.

3m/s

Correct answer is A

m1u1 + m2u2 = (m1 + m2)v


m1 = 18kg, m2 = 6kg, u1 = 4ms-1, u2 = -10m/s


18(4) + 6(-10) = (18+6)v


72 - 60 = 24v
12 = 24v
v = \(\frac{1}{2}\) m/s