WAEC Past Questions and Answers - Page 1016

5,076.

The first, second and third terms of an exponential sequence (G.P) are (x - 4), (x + 2), and (3x + 1) respectively. Find the values of x.

A.

\(\frac{-1}{2}, 8\)

B.

\(\frac{1}{2}, -8\)

C.

\(\frac{-1}{2}, -8\)

D.

\(\frac{1}{2}, 8\)

Correct answer is A

U1 = x - 4
U2 = x + 2
U3 = 3x + 1

\(\frac{u_2}{u_1} = \frac{u_3}{u_2}\)

\(\frac{x+2}{x-4} = \frac{3x+1}{x+2}\)

(x+2)(x+2) = (x-4)(3x+1)
x\(^2\) + 4x + 4 = 3x2 - 11x - 4
collecting like terms
2x\(^2\) - 15x - 8 =0
2x\(^2\) + x - 16x - 8 = 0
x(2x + 1) - 8(2x + 1) = 0
(x-8)(2x+1) = 0

x = (\(\frac{-1}{2}, 8\))

5,077.

Find the coefficient of x\(^3\)y\(^2\) in the binomial expansion of (x-2y)\(^5\)

A.

-80

B.

10

C.

40

D.

90

Correct answer is C

x\(^3\)y\(^2\) in (x-2y)\(^5\)


n = 5, r = 3, p = x, q = -2y

 

5C\(_3\) * x\(^3\) -2y\(^2\)

5C\(_3\) = \(\frac{5!}{[5-3]!3!}\)

\(\frac{5*4*3!}{2! 3!}\) →  \(\frac{5*4}{2}\)

5C\(_3\) = 10

: 5C\(_3\) * x\(^3\) -2y\(^2\) = 10 *  x\(^3\) 4y\(^2\)

 40x\(^3\)y\(^2\)
the coefficient is 40

5,078.

If g(x) = √(1-x\(^2\)), find the domain of g(x)

A.

x < -1 or x > 1

B.

x ≤ -1 or x ≥1

C.

-1 ≤ x ≤ 1

D.

-1 < x < 1

Correct answer is C

1 - x\(^2\) ≥ 0
-x\(^2\) ≥ -1
x\(^2\) ≤ 1
√x\(^2\) ≤ 1
|x| ≤ 1
-1 ≤ x ≤ 1

5,080.

The table shows the distribution of the distance (in km) covered by 40 hunters while hunting.

Distance(km) 3 4 5 6 7 8
Frequency 5 4 x 9 2x 1

If a hunter is selected at random, find the probability that the hunter covered at least 6km.

A.

\(\frac{3}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{3}{8}\)

D.

\(\frac{9}{40}\)

Correct answer is A

5+4+x+9+2x+1 = 40
19+3x = 40
3x = 21
x = 7

Distance(km) 3 4 5 6 7 8
Frequency 5 4 7 9 14 1

The probability that the hunter covered at least 6km, means the hunter covered either 6km or 7km, or 8km.

24 hunters covered at least 6km

24
40
 =   3
5