WAEC Past Questions and Answers - Page 1019

5,091.

Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k \end{vmatrix}  \begin{vmatrix} 3 \\ -26 \end{vmatrix} = 15\). Solve for k.

A.

-8

B.

-5

C.

-4

D.

-3

Correct answer is B

\(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k \end{vmatrix}  \begin{vmatrix} 3 \\ -26 \end{vmatrix} = 15\)

 

\(\begin{vmatrix} 2[-6] & - 3k \\ 1[-6] & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)

 

\(\begin{vmatrix} -12 & - 3k \\ -6 & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)

 

-12 - 3k = 3

-3k = 3 + 12

k = \(\frac{15}{-3}\)

k = -5

5,092.

Evaluate\({1_0^∫} x^2(x^3+2)^3\)

A.

\(\frac{56}{12}\)

B.

\(\frac{65}{12}\)

C.

12

D.

65

Correct answer is B

\({1_0^∫} x^2(x^3+2)^3\)dx

let \( u = x^3 + 2, du = 3x^2dx\)

when x = 1,  u = 3

when x = 0,  u = 2

dx = \(\frac{du}{3x^2}\)

\({3_2^∫}\) \(\frac{x^2[u]^3}{3x^2}\)

\({3_2^∫}\) \(\frac{u^3}{3}\) du 

= \(\frac{u^4}{3*4}\)\(_2\)3

\(\frac{1}{12} [u^4]\)\(_2\)3

\(\frac{1}{12} [3^4 - 2^4]\)

\(\frac{1}{12}[81 - 16]\)

\(\frac{65}{12}\)

5,093.

If \(x^2+y^2+-2x-6y+5 =0\), evaluate dy/dx when x=3 and y=2.

A.

2

B.

-2

C.

-4

D.

4

Correct answer is A

\(x^2+y^2+-2x-6y+5 =0\)

When differentiated:

\(x^2+y^2+-2x-6y+5 =0\) → 2x + 2y - 2 - 6 = 0

where x=3 and y=2

2[3] + 2[2] - 8 = 0

6 + 4 - 8 = 2

5,094.

Given that \(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)

A.

23

B.

17

C.

-17

D.

18

Correct answer is C

\(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)

\(\frac{8x+m}{x^2-3x-4}\) ≡ \(\frac{5(x-1)+ 3(x+4)}{x^2-3x-4}\)

multiplying both sides by x2-3x-4
8x+m ≡ 5(x-4)+3(x+1)
8x + m ≡ 5x - 20 + 3x + 3
8x - 5x - 3x + m = -20 + 3
m = -17

5,095.

Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x.

A.

10x + 1

B.

10x + 2

C.

x(15x + 1)

D.

x(15x + 2)

Correct answer is A

\(\frac{5x^ 3+x^2}{x}\) → \(\frac{5x^ 3}{x} + \frac{x^2}{x}\)

5x\(^2\) + x 

Then dy/dx = 10x + 1