Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)
6y - x - 29 = 0
6y + x - 31 = 0
y - 6x - 1 = 0
y - 6x + 1 = 0
Correct answer is B
y = \(3x^2 + 2\)
\(y^1 = \frac{dy}{dx} = 6x\)
Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
\(^mtangent = y^1(1) = 6 (1) = 6\)
Slope of the Normal Line \( ^mnorma l= - \frac{1}{^mtangent}\)
\(^mnormal = - \frac{1}{6}\)
\(y−y_1= ^mnormal⋅(x−x_1)\)
=y-5=-\(\frac{1}{6}(x-1)\)
=y-5=-\(\frac{1}{6}x+\frac{1}{6}\)
=y=-\(\frac{1}{6}x+\frac{1}{6}+5\)
Multiply through by 6
=6y=-x+1+30
∴6y+ x - 31=0
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j
56.3º
76.3º
66.4º
54.8º
Correct answer is A
Using the dot product:
a.b = |a||b|cos θ
a.b = 5(-2) + 12(3) = -10 + 36 = 26
|a| = √(52 + 122) = √(25 + 144)
|a| = √169 = 13
|b| = \(√((-2)^2 + 3^2)\) = √(4 + 9)
|b| = √13
= 26 = 13√13 x cos θ
= \(\frac{26}{13\sqrt13}\) = cos θ
=\(\frac{2}{\sqrt13}\) = cos θ
= θ = \(cos^{-1} (\frac{2}{\sqrt13})\)
∴ θ = 56.3º
The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x.
4√3
2√6
3√2
2√3
Correct answer is D
d = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
x1 = x, x2 = -x, y1 = 4, y2 = 3, d = 7
7 = \(\sqrt{(-x -x)^2 + (3 - 4)^2}\)
7 = \(\sqrt{(-2x)^2 + (-1)^2}\)
7 = ( \(\sqrt{4x^2 + 1}\)
square both sides
7\(^2\) = 4x\(^2\) + 1
collect like terms
4x\(^2\) = 49 - 1
4x\(^2\) = 48
x\(^2\) = \(\frac{48}{4}\)
x\(^2\) = 12
x = √12
x = 2√3
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)
61
25
20
13
Correct answer is A
x - 1 = 2
x = 3
f(2) = (3)\(^3\) + 3(3)\(^2\) + 4(3) - 5
f(2) = 27 + 27 + 12 - 5
= 61
17.55i + 13.78j
17.55j - 13.78i
-17.55i + 13.78j
-17.55i - 13.78j
Correct answer is B
Converting the forces to their rectangular forms
F = (10N, 060º)
Fx = 10cos60 = 5i
fy = 10sin60 = 8.66j
F = 5i + 8.66j
P = (15N, 120º)
Px = 15cos120 = -7.5i
py = 15sin120 = 12.99j
P = -7.5i + 12.99j
Q = (12N, 200º)
Qx = 12cos200 = -11.28i
Qy = 12sin200 = -4.1j
Q = -11.28i -4.1j
The resultant force = F + P + Q
R = 5i + 8.66j + (-7.5i + 12.99j) + (-11.28i -4.1j)
R = -13.78i + 17.55j