WAEC Past Questions and Answers - Page 1009

5,041.

A uniform beam PQ of length 80 cm and weight 60 N rests on a support at X where | PX | = 30 cm. If the body is kept in equilibrium by a mass m kg which is placed at P , calculate the value of m
[Take g = 10 ms\(^{-2}\)]

A.

2.0

B.

3.0

C.

2.5

D.

4.0

Correct answer is C

∑ clock wise moments =∑ anti clock wise moments

= 60 x 10 = 30 x m

= 600 = 30 m

m = \(\frac{600}{30} = 20 N\)

W = mg ==> m = \(\frac{W}{g}\)

∴ m = \(\frac{20}{10} = 2kg\)

5,042.

If \(f : x → 2 tan x\) and \(g : x → √(x^2 + 8), find ( g o f )(45^o)\)

A.

4

B.

2√3

C.

6

D.

3√2

Correct answer is B

\(f : x → 2 tan x\)

\(g : x → √(x^2 + 8)\)

\(( g o f ) = √((2 tan x)^2 + 8)\)

\(( g o f )(45º) = √((2 tan 45º)^2 + 8)\)

= √(4 + 8) = √12

= √(4 x 3)

∴ 2√3

5,043.

An exponential sequence (G.P.) is given by 8√2, 16√2, 32√2, ... . Find the n\(^{th}\) term of the sequence

A.

\(8\sqrt2^n\)

B.

\(2^{(n+2)}\sqrt2\)

C.

\(\sqrt2^{(n+3)}\)

D.

\(8n\sqrt2\)

Correct answer is B

8√2, 16√2, 32√2, ..

\(a = 8\sqrt2; r =\frac{T_2}{T_1}=\frac{16\sqrt2}{8\sqrt2}=2\)

\(T_n=ar^{n-1}\)

\(T_n=8\sqrt2 \times 2^{n-1}\)

\(T_n=2^3\times2^{n-1}\times\sqrt2\)

\(T_n=2^{3+n-1}\times\sqrt2\)

\(\therefore T_n= 2^{(n+2)}\sqrt2\)

5,044.

Solve 6 sin 2θ tan θ = 4, where 0º < θ < 90º

A.

18.43º

B.

30.00º

C.

35.26º

D.

19.47º

Correct answer is C

6 sin 2θ tan θ = 4, where 0º < θ < 90º

sin 2θ = 2sin θ cos θ and tanθ = \(\frac{sinθ}{cosθ}\)

= 6 x 2sin θ cos θ x \(\frac{sin θ}{cos θ} = 4\)

= \(sin^2 θ = 4\)

= \(sin^2 θ = \frac{4}{12}=\frac{1}{3}\)

=\(sin θ = \frac{\sqrt1}{3}=\frac{1}{\sqrt3}\)

= \(θ = sin^{-1}(\frac{1}{\sqrt3})\)

∴ θ = 35.26º

5,045.

Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n).

A.

(62 N , 240º)

B.

(62 N , 200º)

C.

(62 N , 280º)

D.

(62 N , 020º)

Correct answer is D

r = (10 N, 200º) and n = (16 N, 020º)

In rectangular form:

r = 10cos 200ºi + 10sin 200ºj = -9.397i - 3.420j

n = 16cos 20ºi + 16sin 20ºj = 15.035i + 5.472j

3r = -28.191i - 10.260j

2n = 30.070i + 10.945j

3r - 2n = (-28.191i - 10.260j) - (30.070i + 10.945j)

3r - 2n = -58.261i - 21.205j

|3r - 2n| = √((-58.261)\(^2\) + (-21.205)\(^2\)) = 62 N

\(tan θ =\frac{-21.205}{-58.261} = 0.3640\)

\(θ = tan^{-1} (0.3640) = 20^o\)

∴ (62 N , 020º)