Given that \(y^2 + xy = 5,find \frac{dy}{dx}\)
\(\frac{y}{2y + x}\)
\(\frac{-y}{2y + x}\)
\(\frac{-y}{2y - x}\)
\(\frac{y}{2y + x}\)
Correct answer is B
\(y^2 + xy = 5\)
By implicit differentiation
\(=2y\frac{dy}{dx}+y+x\frac{dy}{dx}=0\)
\(=2y\frac{dy}{dx}+x\frac{dy}{dx}=-y\)
Factor out \(\frac{dy}{dx}\)
\(=\frac{dy}{dx}(2y+x)=-y\)
\(∴\frac{dy}{dx}=\frac{-y}{2y + x}\)
A linear transformation on the oxy plane is defined by \(P : (x, y) → (2x + y, -2y)\). Find \(P^2\)
\(\begin{bmatrix} 4&0\\1&4\end{bmatrix}\)
\(\begin{bmatrix} 4&4\\0&0\end{bmatrix}\)
\(\begin{bmatrix} 4&0\\0&4\end{bmatrix}\)
\(\begin{bmatrix} 4&1\\0&4\end{bmatrix}\)
Correct answer is C
\(P : (x, y) → (2x + y, -2y)\)
\(p\begin{bmatrix} x\\y\end{bmatrix}=\begin{bmatrix} 2x & y\\0 &-2y\end{bmatrix}\)
\(\therefore p = \begin{bmatrix} 2 & 1\\0 &-2\end{bmatrix}\)
\(\therefore p^2 = \begin{bmatrix} 2&1\\0&-2\end{bmatrix}\) \(\begin{bmatrix} 2&1\\0&-2\end{bmatrix}\) = \(\begin{bmatrix} 4&0\\0&4\end{bmatrix}\)
17.1 N
11.4 N
36.5 N
5.7 N
Correct answer is B
\(m=4.56kg;t=16s;v_1=(10ms^{-1},060^o);v_2=(50ms^{-1},060^o)\)
Notice that there is no change in the direction of the velocity
So,we don't need to write it in a vector form
\(a=\frac{∆v}{t}=\frac{50 - 10}{16}\)
\(a=\frac{40}{16}=2.5ms^{-2}\)
F = ma = 4.56 x 2.5
∴ F = 11.4 N
Given that \(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\),find the value of Q
2
-2
1
-1
Correct answer is A
\(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\)
\(\frac{3x + 4}{(x - 2)(x + 3)}=\frac{P(x-2)+Q(x+3)}{(x-2)(x+3)}\)
=\(3x+4=P(x-2)+Q(x+3)\)
=\(3x+4=Px-2P+Qx+3Q\)
=\(3x+4=Px+Qx-2P+3Q\)
=\(3x+4=(P+Q)x-2P+3Q\)
Equating x and the constants
P+Q=3------(i)
2P+3Q=4-------(ii)
From equation (i)
P=3-Q------(iii)
Substitute (3-Q) for P inequation (ii)
=-2(3-Q)+3Q=4
=-6+2Q+3Q=4
=-6+5Q=4
=5Q=4+6
=5Q=10
∴Q=\(\frac{10}{5}=2\)
If \(3x^2 + p x + 12 = 0\) has equal roots, find the values of p .
±12
±3
±4
±6
Correct answer is A
The general form of a quadratic equation is:
\(x^2\)-(sum of roots) = 0
For equal roots it's:\(x^2 - 2(α)+(α)^2=0\)
\(3x^2+px+12=0\)
Divide through by 3
= \(x^2+\frac{p}{3}x+4=0\)
=\(x^2-(-\frac{p}{3})x+4=0\)
\(So,α^2=4\)
= α = √4 = ±2
Also,-\(\frac{p}{3}= 2α\)
When α = 2
-\(\frac{p}{3} = 2(2)=4\)
=p=-12
When α =-2
-\(\frac{p}{3}=2(-2)=-4\)
= p = 12
∴ values of p = ±12