WAEC Past Questions and Answers - Page 1006

5,026.

If m and ( m + 4) are the roots of \(4x^2 - 4x - 15 = 0\), find the equation whose roots are 2 m and (2 m + 8)

A.

\(x^2+8x-15=0\)

B.

\(x^2-2x-15=0\)

C.

\(x^2-8x-15=0\)

D.

\(x^2+2x+15=0\)

Correct answer is B

\(x^2-\)(sum of roots)\(x+\)(product of roots) = \(0\)

\(4x^2-4x-15=0\)

Divide through by 4

\(=x^2-x-\frac{15}{4}=0\)

\(=x^2-x+(-\frac{15}{4})=0\)

\(=x^2-(1)x+(-\frac{15}{4})=0\)

sum of roots =1

= m + (m + 4) = 1
=2m+4=1

=2m=-3

=m=-\(\frac{3}{2}\)

The equation whose roots are 2m and 2m+8

2m=2×-\(\frac{3}{2}=-3\)and \(2m+8=2×-\frac{3}{2}+8=5\)

\(=x^2-(-3+5)x+(-3)(5)=0\)

\(=x^2-2x+(-15)=0\)

\(∴x^2-2x-15=0\)

5,027.

Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}\) and the determinant of \(Q\) is three more than that of \(P\) , find the values of \(x\)

A.

\(-2,\frac{3}{2}\)

B.

\(2,\frac{3}{2}\)

C.

\(-2,-\frac{3}{2}\)

D.

\(2-,\frac{3}{2}\)

Correct answer is B

\(p = \begin{bmatrix} x&4\\3&7\end{bmatrix}, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}\)

\(p = \begin{bmatrix} x&4\\3&7\end{bmatrix}=7x-12, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}=2x^2-3\)

|Q| = |P| + 3 (Given)

5,028.

The probabilities that Atta and Tunde will hit a target in a shooting contest are \(\frac{1}{6}\) and \({1}{9}\) respectively. Find the probability that only one of them will hit the target.

A.

\(\frac{1}{54}\)

B.

\(\frac{41}{54}\)

C.

\(\frac{20}{27}\)

D.

\(\frac{13}{54}\)

Correct answer is D

\(P(A)=\frac{1}{6},P(T)=\frac{1}{9}\)

Probability that only one of them will hit the target = \(P(A)\times P( \bar T ) + P( \bar A )\times P(T)\)

Where \(P( \bar T )\) is the probability that Tunde will not hit the target and \(P( \bar A )\) is the probability that Atta will not hit the target

\(P( \bar T )=1-\frac{1}{9}=\frac{8}{9}\)

\(P( \bar A )=1-\frac{1}{6}=\frac{5}{6}\)

Pr(only one) =\((\frac{1}{6}\times\frac{8}{9}) + (\frac{5}{6} \times \frac{1}{9}) =\frac{4}{27} + \frac{5}{54}\)

\(\therefore\) pr (only one) = \(\frac{13}{54}\)

5,029.

A function \(f\) is defined by \(f :x→\frac{x + 2}{x - 3},x ≠ 3\).Find the inverse of \(f\) .

A.

\(\frac{x + 3}{x - 2},x ≠ 2\)

B.

\(\frac{x - 3}{x + 2},x ≠ -2\)

C.

\(\frac{3x - 2}{x+1},x ≠ -1\)

D.

\(\frac{3x + 2}{x - 1},x ≠ 1\)

Correct answer is D

\(f :x→\frac{x + 2}{x - 3},x ≠ 3, f = ?\)

Let \(f :x=y\)

\(y=\frac{x + 2}{x - 3}\)

\(=x+2=y(x-3)\)

\(=x-xy=-3y-2\)

\(=x(1-y)=-3y-2\)

\(=x=\frac{-3y - 2}{1 - y}=\frac{-(3y + 2)}{- (y - 1)}\)

\(=x=\frac{3y + 2}{y - 1}\)

\(∴f ^{-1} : x=\frac{3x + 2}{x - 1},x ≠ 1\)

5,030.

If \(X\) and \(Y\) are two independent events such that \(P (X) = \frac{1}{8}\) and \(P (X ⋃ Y) = \frac{5}{8}\), find \(P (Y)\).

A.

\(\frac{1}{6}\)

B.

\(\frac{4}{7}\)

C.

\(\frac{4}{21}\)

D.

\(\frac{3}{7}\)

Correct answer is B

\(P(X⋃Y)=\frac{5}{8}\)

\(P(X⋂Y)=P(X)\times P(Y)\)

Since X and Y are independent events, the probability of their union (X ⋃ Y) can be calculated as:

\(P(X⋃Y)=P(X)+P(Y)-P(X⋂Y)\)

\(=\frac{5}{8}=\frac{1}{8}+P(Y)-\frac{1}{8}\times P(Y)\)

\(=\frac{5}{8}-\frac{1}{8}=P(Y)-\frac{1}{8}\times P(Y)\)

\(=\frac{1}{2}=P(Y)(1-\frac{1}{8})\)

\(=\frac{1}{2}=P(Y)(\frac{7}{8})\)

\(=P(Y)=\frac{1}{2}÷\frac{7}{8}\)

\(∴P(Y)=\frac{1}{2}x\frac{8}{7}=\frac{4}{7}\)