WAEC Past Questions and Answers - Page 2669

13,341.

Make s the subject of the relation: P = S + \(\frac{sm^2}{nr}\)

A.

s = \(\frac{mrp}{nr + m^2}\)

B.

s = \(\frac{nr + m^2}{mrp}\)

C.

s = \(\frac{nrp}{mr + m^2}\)

D.

s = \(\frac{nrp}{nr + m^2}\)

Correct answer is D

P = S + \(\frac{sm^2}{nr}\)

P = S(1 + \(\frac{m^2}{nr}\))

P = S(1 + \(\frac{nr + m^2}{nr}\))

nrp = S(nr + m2)

S = \(\frac{nrp}{nr + m^2}\)

13,342.

Simplify; \(\frac{2}{1 - x} - \frac{1}{x}\)

A.

\(\frac{x + 1}{x(1 - x)}\)

B.

\(\frac{3x - 1}{ x(1 - x)}\)

C.

\(\frac{3x + 1}{ x(1 - x)}\)

D.

\(\frac{x + 1}{ x(1 - x)}\)

Correct answer is D

\(\frac{2}{1 - x} - \frac{1}{x}\) = \(\frac{2x - 1(1 - x)}{x(1 - x)}\)

= \(\frac{2x - 1(1 + x)}{x(1 - x)}\)

= \(\frac{3x - 1}{x(1 - x)}\)

13,343.

Given that 2x + y = 7 and 3x - 2y = 3, by how much is 7x greater than 10?

A.

1

B.

3

C.

7

D.

17

Correct answer is C

2x + y = 7...(1)

3x - 2y = 3...(2)

From (1), y = 7 - 2x for y in (2)

3x - 2(7 - 2x) = 3

3x - 14 + 4x = 3

7x + 3 + 14 = 17

x = \(\frac{17}{7}\)

Hence, 7 x \(\frac{17}{7}\)

= 17 - 10

= 7

13,344.

Find the values of y for which the expression \(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\) is undefined

A.

6, -7

B.

3, -6

C.

3, -7

D.

-3, -7

Correct answer is C

\(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\)

Factorize the denominator;

Y2 + 7y - 3y - 21

= y(y + 7) -3 (y + 7)

= (y - 3)(y + 7)

Hence the expression \(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\) is undefined

when y2 + 4y - 21 = 0

ie. y = 3 or -7

13,345.

The roots of a quadratic equation are \(\frac{4}{3}\) and -\(\frac{3}{7}\). Find the equation

A.

21x2 - 19x - 12 = 0

B.

21x2 + 37x - 12 = 0

C.

21x2 - x + 12 = 0

D.

21x2 + 7x - 4 = 0

Correct answer is A

Let x = \(\frac{4}{3}\), x = -\(\frac{3}{7}\)

Then 3x = 4, 7x = -3

3x - 4 = 0, 7x + 3 = 0

(3x - 4)(7x + 3) = 0

21x2 + 9x - 28x - 12 = 0

21x2 - 19x - 12 = 0